
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 12 Part 2
Scheduling Anomalies



Embedded Systems Design and Modeling

Outline
 Scheduling anomalies definition
 Scheduling anomalies cases

 Caused by mutual exclusion:
1. Priority inversion

 Solution: priority inheritance
 Real case: Mars Pathfinder

2. Deadlock
 Solution: priority ceiling protocol

 Seen in multiprocessor environments:
3. Richard’s anomalies (non-monotonic, brittle)
4. Again, mutual exclusion issues
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Basics
 Scheduling anomalies definition: when a 

schedule shows unexpected and 
counterintuitive behaviors under special 
circumstances

 Often (but not always) caused by mutual 
exclusion locks:
 Mutexes are needed to control accesses to 

shared resources
 They can also complicate the scheduling and 

cause anomalies
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Anomalies Caused by Mutexes
1. Priority inversion:

 A high priority task is ready to execute but is blocked by a 
lower priority task that holds a lock it needs

 It can be bounded or unbounded
 Example: task 1 has highest priority, task 3 lowest. Task 3 

acquires a lock on a shared resource. It gets preempted by 
task 1, which then tries to acquire the lock and blocks. Task 2 
preempts task 3 at time 4, keeping the higher priority task 1 
blocked for a large amount of time.
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Real Example: Mars Pathfinder
 The Mars Rover Pathfinder landed on Mars on 

July 4th, 1997.
 After a few days the Pathfinder began missing 

deadlines, losing data, and self-resets.
 The problem was diagnosed on the ground as 

priority inversion.
 Two tasks were critical for controlling 

communication on Pathfinder’s communication 
bus: the scheduler task (bc_sched) and the 
distribution task (bc_dist).

 Each of these tasks checked every 125ms to be 
sure that the other had run successfully.
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Pathfinder Story (Continued)
 bc_dist was blocked by a much lower priority 

meteorological science task (ASI/MET).
 ASI/MET was preempted by several medium 

priority processes such as accelerometers and 
radar altimeters.

 bc_sched started and discovered that bc_dist had 
not completed. Under these circumstances, 
bc_sched reacted by reinitializing the lander’s 
hardware and software and terminating all 
ground command activities.

 NASA and WindRiver reproduced the failure on 
Earth and discovered the priority inversion.
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Priority Inversion Solution
 Priority inheritance: when a task blocks the execution of 

another higher priority task, it executes at the highest 
priority of all of the tasks it blocks.

 Example: Task 1 has highest priority, task 3 lowest. Task 3 
acquires a lock on a shared object, entering a critical 
section. It gets preempted by task 1, which then tries to 
acquire the lock and blocks. Task 3 inherits the priority of 
task 1, preventing preemption by task 2.
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Anomalies Caused by Mutexes
2. Deadlock:

 The lower priority task starts first and acquires 
lock a, then gets preempted by the higher 
priority task, which acquires lock b and then 
blocks trying to acquire lock a. The lower 
priority task then blocks trying to acquire lock 
b, and no further progress is possible. 
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Deadlock Solution
 Priority Ceiling Protocol: Every lock or semaphore 

is assigned a priority ceiling equal to the priority 
of the highest-priority task that can potentially 
lock it.

 A task can acquire a lock only if the task’s priority 
is strictly higher than the priority ceilings of all 
locks currently held by other tasks.

 This prevents deadlocks by blocking a task to 
acquire a lock held by other tasks.

 There are extensions supporting dynamic 
priorities and dynamic creations of locks.
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Priority Ceiling Protocol Example
 Locks a and b have priority ceilings equal to the 

priority of task 1. At time 3, task 1 attempts to 
lock b, but it cannot because task 2 currently 
holds lock a, which has priority ceiling equal to 
the priority of task 1.
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Partial Summary
 To successfully share resources, a system 

needs two properties:
 Freedom from mutual deadlock
 Freedom from unbounded priority inversion

 Is bounded priority inversion acceptable?

 The combination of priority inheritance 
protocol and the priority ceiling protocol 
guarantee the above properties.
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Anomalies in Multiprocessors
3. Known as Richard’s anomalies
 Theorem: If a task set with fixed 

priorities, execution times, and 
precedence constraints is scheduled 
according to priorities on a fixed number 
of processors, then increasing the number 
of processors, reducing execution times, 
or weakening precedence constraints may 
not improve the schedule length and may
even make it longer.
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Richard’s Anomalies
 Consider 9 tasks with the following precedence 

graph and execution times.
 Assume lower numbered tasks have higher 

priority than higher numbered tasks.
 The priority-based three-processor schedule:
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Adding One More Processor

 The four-processor schedule takes longer!
 Priority-based scheduling is greedy. A smarter 

scheduler for this example could hold off 
scheduling 5, 6, or 7, leaving a processor idle for 
one time unit.

 But if tasks arrive only after their predecessor 
completes, then greedy scheduling may be the 
only practical option. 14
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Reducing Execution Times By 1

 Reducing the computation times by 1 also results 
in a longer execution time!

 Again, this is caused by the greedy approach due 
to dynamic scheduling.
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Weakening Precedence Constraints

 Weakening precedence constraints can also result 
in a longer schedule!
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 Removing the precedence constraints (4,8) and 
(4,7):
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Anomalies in Multiprocessors
4. Anomalies caused by mutexes:

 Assume tasks 2 and 4 share the same resource 
in exclusive mode, and tasks are statically 
allocated to processors. Then if the execution 
time of task 1 is reduced, the schedule length 
increases.
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Conclusions
 In general, all scheduling algorithms suffer from 

possible anomalies.
 Timing behavior under all known task scheduling 

strategies is brittle:
 Small changes can have big and unexpected 

consequences.
 And is non-monotonic:

 Improvements in performance at a local level can result 
in degradations in performance at a global level,

 Since execution times are hard to predict, 
anomalies can result in system failures.

 Chapter 12 homework: 1 thru 5 for 1404/2/23
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