
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 12 Part 2
Scheduling Anomalies



Embedded Systems Design and Modeling

Outline
 Scheduling anomalies definition
 Scheduling anomalies cases

 Caused by mutual exclusion:
1. Priority inversion

 Solution: priority inheritance
 Real case: Mars Pathfinder

2. Deadlock
 Solution: priority ceiling protocol

 Seen in multiprocessor environments:
3. Richard’s anomalies (non-monotonic, brittle)
4. Again, mutual exclusion issues

2



Embedded Systems Design and Modeling

Basics
 Scheduling anomalies definition: when a 

schedule shows unexpected and 
counterintuitive behaviors under special 
circumstances

 Often (but not always) caused by mutual 
exclusion locks:
 Mutexes are needed to control accesses to 

shared resources
 They can also complicate the scheduling and 

cause anomalies

3



Embedded Systems Design and Modeling

Anomalies Caused by Mutexes
1. Priority inversion:

 A high priority task is ready to execute but is blocked by a 
lower priority task that holds a lock it needs

 It can be bounded or unbounded
 Example: task 1 has highest priority, task 3 lowest. Task 3 

acquires a lock on a shared resource. It gets preempted by 
task 1, which then tries to acquire the lock and blocks. Task 2 
preempts task 3 at time 4, keeping the higher priority task 1 
blocked for a large amount of time.

4



Embedded Systems Design and Modeling

Real Example: Mars Pathfinder
 The Mars Rover Pathfinder landed on Mars on 

July 4th, 1997.
 After a few days the Pathfinder began missing 

deadlines, losing data, and self-resets.
 The problem was diagnosed on the ground as 

priority inversion.
 Two tasks were critical for controlling 

communication on Pathfinder’s communication 
bus: the scheduler task (bc_sched) and the 
distribution task (bc_dist).

 Each of these tasks checked every 125ms to be 
sure that the other had run successfully.

5



Embedded Systems Design and Modeling

Pathfinder Story (Continued)
 bc_dist was blocked by a much lower priority 

meteorological science task (ASI/MET).
 ASI/MET was preempted by several medium 

priority processes such as accelerometers and 
radar altimeters.

 bc_sched started and discovered that bc_dist had 
not completed. Under these circumstances, 
bc_sched reacted by reinitializing the lander’s 
hardware and software and terminating all 
ground command activities.

 NASA and WindRiver reproduced the failure on 
Earth and discovered the priority inversion.

6



Embedded Systems Design and Modeling

Priority Inversion Solution
 Priority inheritance: when a task blocks the execution of 

another higher priority task, it executes at the highest 
priority of all of the tasks it blocks.

 Example: Task 1 has highest priority, task 3 lowest. Task 3 
acquires a lock on a shared object, entering a critical 
section. It gets preempted by task 1, which then tries to 
acquire the lock and blocks. Task 3 inherits the priority of 
task 1, preventing preemption by task 2.

7



Embedded Systems Design and Modeling

Anomalies Caused by Mutexes
2. Deadlock:

 The lower priority task starts first and acquires 
lock a, then gets preempted by the higher 
priority task, which acquires lock b and then 
blocks trying to acquire lock a. The lower 
priority task then blocks trying to acquire lock 
b, and no further progress is possible. 

8



Embedded Systems Design and Modeling

Deadlock Solution
 Priority Ceiling Protocol: Every lock or semaphore 

is assigned a priority ceiling equal to the priority 
of the highest-priority task that can potentially 
lock it.

 A task can acquire a lock only if the task’s priority 
is strictly higher than the priority ceilings of all 
locks currently held by other tasks.

 This prevents deadlocks by blocking a task to 
acquire a lock held by other tasks.

 There are extensions supporting dynamic 
priorities and dynamic creations of locks.

9



Embedded Systems Design and Modeling

Priority Ceiling Protocol Example
 Locks a and b have priority ceilings equal to the 

priority of task 1. At time 3, task 1 attempts to 
lock b, but it cannot because task 2 currently 
holds lock a, which has priority ceiling equal to 
the priority of task 1.

10



Embedded Systems Design and Modeling

Partial Summary
 To successfully share resources, a system 

needs two properties:
 Freedom from mutual deadlock
 Freedom from unbounded priority inversion

 Is bounded priority inversion acceptable?

 The combination of priority inheritance 
protocol and the priority ceiling protocol 
guarantee the above properties.

11



Embedded Systems Design and Modeling

Anomalies in Multiprocessors
3. Known as Richard’s anomalies
 Theorem: If a task set with fixed 

priorities, execution times, and 
precedence constraints is scheduled 
according to priorities on a fixed number 
of processors, then increasing the number 
of processors, reducing execution times, 
or weakening precedence constraints may 
not improve the schedule length and may
even make it longer.

12



Embedded Systems Design and Modeling

Richard’s Anomalies
 Consider 9 tasks with the following precedence 

graph and execution times.
 Assume lower numbered tasks have higher 

priority than higher numbered tasks.
 The priority-based three-processor schedule:

13



Embedded Systems Design and Modeling

Adding One More Processor

 The four-processor schedule takes longer!
 Priority-based scheduling is greedy. A smarter 

scheduler for this example could hold off 
scheduling 5, 6, or 7, leaving a processor idle for 
one time unit.

 But if tasks arrive only after their predecessor 
completes, then greedy scheduling may be the 
only practical option. 14



Embedded Systems Design and Modeling

Reducing Execution Times By 1

 Reducing the computation times by 1 also results 
in a longer execution time!

 Again, this is caused by the greedy approach due 
to dynamic scheduling.

15



Embedded Systems Design and Modeling

Weakening Precedence Constraints

 Weakening precedence constraints can also result 
in a longer schedule!

16

 Removing the precedence constraints (4,8) and 
(4,7):



Embedded Systems Design and Modeling

Anomalies in Multiprocessors
4. Anomalies caused by mutexes:

 Assume tasks 2 and 4 share the same resource 
in exclusive mode, and tasks are statically 
allocated to processors. Then if the execution 
time of task 1 is reduced, the schedule length 
increases.

17



Embedded Systems Design and Modeling

Conclusions
 In general, all scheduling algorithms suffer from 

possible anomalies.
 Timing behavior under all known task scheduling 

strategies is brittle:
 Small changes can have big and unexpected 

consequences.
 And is non-monotonic:

 Improvements in performance at a local level can result 
in degradations in performance at a global level,

 Since execution times are hard to predict, 
anomalies can result in system failures.

 Chapter 12 homework: 1 thru 5 for 1404/2/23
18


